Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 21
Фильтр
Добавить фильтры

Годовой диапазон
1.
Curr Med Chem ; 2023 02 21.
Статья в английский | MEDLINE | ID: covidwho-2258074

Реферат

Xanthones are widely distributed polyphenols, present commonly in higher plants; Garcinia, Calophyllum, Hypericum, Platonia, Mangifera, Gentiana and Swertia. Xanthone tricyclic scaffold is able to interact with different biological targets, showing antibacterial and cytotoxic effects, as well as potent effects against osteoarthritis, malaria, and cardiovascular diseases. Thus, in this article we focused on pharmacological effects, applications and preclinical studies with the recent updates of xanthon´s isolated compounds from 2017-2020. We found that only α-mangostin, gambogic acid, and mangiferin, have been subjected to preclinical studies with particular emphasis on the development of anticancer, diabetes, antimicrobial and hepatoprotective therapeutics. Molecular docking calculations were performed to predict the binding affinities of xanthone-derived compounds against SARS-CoV-2 Mpro. According to the results, cratoxanthone E and morellic acid demonstrated promising binding affinities towards SARS-CoV-2 Mpro with docking scores of −11.2 and −11.0 kcal/mol, respectively. Binding features manifested the capability of cratoxanthone E and morellic acid to exhibit nine and five hydrogen bonds, respectively, with the key amino acids of the Mpro active site. In conclusion, cratoxanthone E and morellic acid are promising anti-COVID-19 drug candidates that warrant further detailed in vivo experimental estimation and clinical assessment.

2.
Viruses ; 15(1)2023 Jan 15.
Статья в английский | MEDLINE | ID: covidwho-2200888

Реферат

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/therapeutic use
3.
J Crit Care Med (Targu Mures) ; 8(4): 249-258, 2022 Oct.
Статья в английский | MEDLINE | ID: covidwho-2123364

Реферат

Introduction: COVID-19 is characterized by a procoagulant state that increases the risk of venous and arterial thrombosis. The dose of anticoagulants in patients with severe COVID-19 pneumonia without suspected or confirmed thrombosis has been debated. Aim of the study: We evaluated the prevalence, predictors, and outcomes of venous thromboembolism (VTE) in critically ill COVID-19 patients and assessed the association between the dose of anticoagulants and outcomes. Materials and methods: This retrospective cohort included patients with COVID-19 who were admitted to the ICU between March and July 2020. Patients with clinically suspected and confirmed VTE were compared to those not diagnosed to have VTE. Results: The study enrolled 310 consecutive patients with severe COVID-19 pneumonia: age 60.0±15.1 years, 67.1% required mechanical ventilation and 44.7% vasopressors. Most (97.1%) patients received anticoagulants during ICU stay: prophylactic unfractionated heparin (N=106), standard-dose enoxaparin (N=104) and intermediate-dose enoxaparin (N=57). Limb Doppler ultrasound was performed for 49 (15.8%) patients and chest computed tomographic angiography for 62 (20%). VTE was diagnosed in 41 (13.2%) patients; 20 patients had deep vein thrombosis and 23 had acute pulmonary embolism. Patients with VTE had significantly higher D-dimer on ICU admission. On multivariable Cox regression analysis, intermediate-dose enoxaparin versus standard-dose unfractionated heparin or enoxaparin was associated with lower VTE risk (hazard ratio, 0.06; 95% confidence interval, 0.01-0.74) and lower risk of the composite outcome of VTE or hospital mortality (hazard ratio, 0.42; 95% confidence interval, 0.23-0.78; p=0.006). Major bleeding was not different between the intermediate- and prophylactic-dose heparin groups. Conclusions: In our study, clinically suspected and confirmed VTE was diagnosed in 13.2% of critically ill patients with COVID-19. Intermediate-dose enoxaparin versus standard-dose unfractionated heparin or enoxaparin was associated with decreased risk of VTE or hospital mortality.

4.
Clin Neurophysiol ; 139: 106-113, 2022 07.
Статья в английский | MEDLINE | ID: covidwho-2000339

Реферат

OBJECTIVE: To understand the impact of the Coronavirus Disease-2019 (COVID-19) pandemic on seizure frequency in persons with epilepsy with a Responsive Neurostimulation (RNS) system implanted. METHODS: Weekly long episode counts (LEC) were used as a proxy for seizures for six months pre-COVID-19 and during the COVID-19 period. Telephone surveys and chart reviews were conducted to assess patient mental health during the pandemic. The change in LEC between the two time periods was correlated to reported stressors. RESULTS: Twenty patients were included. Comparing the pre-COVID-19 period to the COVID-19 period, we found that only 5 (25%) patients had increased seizures, which was positively correlated with change in anti-seizure medications (ASM, p = 0.03) and bitemporal seizures (p = 0.03). Increased seizures were not correlated to anxiety (p = 1.00), depression (p = 0.58), and sleep disturbances (p = 1.00). The correlation between RNS-detected and patient-reported seizures was poor (p = 0.32). CONCLUSIONS: Most of our patients did not have an increase in seizures following the COVID-19 pandemic. Changes in ASM and bitemporal seizures were positively correlated to increased LEC. There was no correlation between pandemic-related stress and seizures in those found to have increased seizures. SIGNIFICANCE: This is the first study correlating RNS-derived objective LECs with patient self-reports and potential seizure risk factors during the COVID-19 pandemic.


Тема - темы
COVID-19 , Epilepsy , Anxiety/therapy , Epilepsy/drug therapy , Humans , Pandemics , Seizures/epidemiology , Seizures/therapy
5.
RSC Adv ; 11(33): 20151-20163, 2021 Jun 03.
Статья в английский | MEDLINE | ID: covidwho-1815622

Реферат

The chemical characterization of the extract of the aerial parts of Paronychia arabica afforded two oxetane containing lignans, paronychiarabicine A (1) and B (2), and one new megastigmane, paronychiarabicastigmane A (3), alongside a known lignan (4), eight known phenolic compounds (5-12), one known elemene sesquiterpene (13) and one steroid glycoside (14). The chemical structures of the isolated compounds were constructed based upon the HRMS, 1D, and 2D-NMR results. The absolute configurations were established via NOESY experiments as well as experimental and TDDFT-calculated electronic circular dichroism (ECD). Utilizing molecular docking, the binding scores and modes of compounds 1-3 towards the SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp) were revealed. Compound 3 exhibited a promising docking score (-9.8 kcal mol-1) against SARS-CoV-2 Mpro by forming seven hydrogen bonds inside the active site with the key amino acids. The reactome pathway enrichment analysis revealed a correlation between the inhibition of GSK3 and GSK3B genes (identified as the main targets of megastigmane treatment) and significant inhibition of SARS-CoV-1 viral replication in infected Vero E6 cells. Our results manifest a novel understanding of genes, proteins and corresponding pathways against SARS-CoV-2 infection and could facilitate the identification and characterization of novel therapeutic targets as treatments of SARS-CoV-2 infection.

6.
RSC advances ; 12(20):12583-12589, 2022.
Статья в английский | EuropePMC | ID: covidwho-1812714

Реферат

A new epoxy ergostane sterol, named versisterol, was isolated from Aspergillus versicolor, an endophytic fungus from Avicennia marina. The structure of the isolated compound was deduced by means of one- and two-dimensional NMR and high-resolution mass spectrometry. The absolute stereochemistry was elucidated by NOESY analysis, and experimental and calculated time-dependent density functional theory (TD-DFT) circular dichroism spectroscopy. Versisterol inhibited 3CL protease (3CLpro) with an IC50 value of 2.168 ± 0.09 μM. Binding affinities and molecular interactions of versisterol towards 3CLpro were scrutinized and compared to lopinavir with the help of the combination of docking computations and molecular dynamics (MD) simulation. In silico calculations demonstrated a comparable binding affinity of versisterol with a docking score of −9.4 kcal mol−1, and MM-GBSA binding energy over 200 ns MD simulation of −29.1 kcal mol−1, with respect to lopinavir (−9.8 and −32.2 kcal mol−1, respectively). These findings suggested that versisterol can be an auspicious prototype for developing new 3CLpro drug candidates against COVID-19. A new epoxy ergostane sterol, named versisterol, was isolated from Aspergillus versicolor, an endophytic fungus from Avicennia marina.

7.
BMC Med Educ ; 22(1): 218, 2022 Mar 30.
Статья в английский | MEDLINE | ID: covidwho-1770524

Реферат

BACKGROUND: The coronavirus (COVID-19) pandemic required a transformation of medical education in Egypt. Public health measures necessitated a rapid shift from traditional face to face lectures to largely online platforms following campus closures. The aim of this study is to characterize medical student use and perception of online medical education in Egypt as well as exploring the efficacy of different e-learning modalities. Additionally, many barriers and opportunities as perceived by students are reviewed to inform future educational improvements. METHODS: A 29-item online survey was created on google forms and distributed by social media to medical students across 26 Egyptian medical schools. The survey was administered from August 20th, 2021, to September 5th, 2021. The survey consisted of a mixture of questions style. The medical students were asked about their experiences with online medical education during the COVID-19 pandemic as well as medical students' anxiety, perceived academic performance, and obstacles related to online education. RESULTS: Of the 4935 responses collected, 43.4% (n = 2140) of respondents were women; 56.6% (n = 2795) were men. Medical students from private medical schools were 13.0% (n = 644), whereas 87.0% (n = 4291) were from public medical schools. 54.6% of students reported that online education is not as effective as face-to-face education. There was a significant rise in hours spent by medical students on online medical education compared to before COVID-19 pandemic. More than half of students (63%) agreed that online recorded video tutorials (e.g., YouTube) were the most effective form of online medical education. CONCLUSION: The shift to online education has significantly impacted medical students in Egypt. Medical students reported various limitations and challenges of online medical education, which must be addressed considering the potential benefits of online platforms over traditional face to face learning. The results of this nationwide study provide a framework for potential areas to implement change to improve the accessibility and structure of online medical education in Egypt.


Тема - темы
COVID-19 , Education, Distance , Education, Medical , Students, Medical , COVID-19/epidemiology , Education, Distance/methods , Egypt/epidemiology , Female , Humans , Male , Pandemics , Schools, Medical
8.
Beverages ; 8(1):13, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1760334

Реферат

(1) Background: beverages based on extracts from Camellia sinensis are popular worldwide. Due to an increasing number of processed teas on the market, there is a need to develop unified classification standards based on chemical analysis. Meanwhile, phytochemical characterizations are mainly performed on tea samples from China (~80%). Hence, data on teas of other provenances is recommended. (2) Methods: in the present investigation, we characterized lyophilised extracts obtained by infusion, maceration and methanolic extraction derived from tea samples from China, Japan, Sri Lanka and Portugal by phytochemistry (catechins, oxyaromatic acids, flavonols, alkaloids and theanine). The real benefits of drinking the tea were analysed based on the bioavailability of the determined phytochemicals. (3) Results: the infusions revealed the highest total phenolic contents (TPC) amounts, while methanolic extracts yielded the lowest. The correlation matrix indicated that the levels of phenolic compounds were similar in the infusions and methanolic samples, while extractions made by maceration were significantly different. The differences could be partially explained by the different amounts of (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and gallic acids (GA). The catechin percentages were significantly lower in the macerations, especially the quantity of EGCG decreases by 4- to 5-fold after this process. (4) Conclusions: the results highlight the importance of the processing methodology to obtain “instant tea”;the composition of the extracts obtained with the same methodology is not significantly affected by the provenance of the tea. However, attention should be drawn to the specificities of the Japanese samples (the tea analysed in the present work was of Sencha quality). In contrast, the extraction methodology significantly affects the phytochemical composition, especially concerning the content of polyphenols. As such, our results indicate that instant tea classification based on chemical composition is sensible, but there is a need for a standard extraction methodology, namely concerning the temperature and time of contact of the tea leaves with the extraction solvent.

9.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 27.
Статья в английский | MEDLINE | ID: covidwho-1674754

Реферат

The main protease (Mpro) is a potential druggable target in SARS-CoV-2 replication. Herein, an in silico study was conducted to mine for Mpro inhibitors from toxin sources. A toxin and toxin-target database (T3DB) was virtually screened for inhibitor activity towards the Mpro enzyme utilizing molecular docking calculations. Promising toxins were subsequently characterized using a combination of molecular dynamics (MD) simulations and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations. According to the MM-GBSA binding energies over 200 ns MD simulations, three toxins-namely philanthotoxin (T3D2489), azaspiracid (T3D2672), and taziprinone (T3D2378)-demonstrated higher binding affinities against SARS-CoV-2 Mpro than the co-crystalized inhibitor XF7 with MM-GBSA binding energies of -58.9, -55.9, -50.1, and -43.7 kcal/mol, respectively. The molecular network analyses showed that philanthotoxin provides a ligand lead using the STRING database, which includes the biochemical top 20 signaling genes CTSB, CTSL, and CTSK. Ultimately, pathway enrichment analysis (PEA) and Reactome mining results revealed that philanthotoxin could prevent severe lung injury in COVID-19 patients through the remodeling of interleukins (IL-4 and IL-13) and the matrix metalloproteinases (MMPs). These findings have identified that philanthotoxin-a venom of the Egyptian solitary wasp-holds promise as a potential Mpro inhibitor and warrants further in vitro/in vivo validation.

10.
Br J Nutr ; 127(8): 1180-1189, 2022 04 28.
Статья в английский | MEDLINE | ID: covidwho-1665636

Реферат

COVID-19 pandemic continues to be a global health crisis. The gut microbiome critically affects the immune system, and some respiratory infections are associated with changes in the gut microbiome; here, we evaluated the role of nutritional and lifestyle habits that modulate gut microbiota on COVID-19 outcomes in a longitudinal cohort study that included 200 patients infected with COVID-19. Of these, 122 cases were mild and seventy-eight were moderate, according to WHO classification. After detailed explanation by a consultant in clinical nutrition, participants responded to a written questionnaire on daily sugar, prebiotic intake in food, sleeping hours, exercise duration and antibiotic prescription, during the past 1 year before infection. Daily consumption of prebiotic-containing foods, less sugar, regular exercise, adequate sleep and fewer antibiotic prescriptions led to a milder disease and rapid virus clearance. Additionally, data on these factors were compiled into a single score, the ESSAP score (Exercise, Sugar consumption, Sleeping hours, Antibiotics taken, and Prebiotics consumption; 0-11 points), median ESSAP score was 5 for both mild and moderate cases; however, the range was 4-8 in mild cases, but 1-6 in moderate (P = 0·001, OR: 4·2, 95 % CI 1·9, 9·1); our results showed a negative correlation between regular consumption of yogurt containing probiotics and disease severity (P = 0·007, OR: 1·6, 95 % CI 1·1, 2·1). Mild COVID-19 disease was associated with 10-20 min of daily exercise (P = 0·016), sleeping at least 8 h daily, prescribed antibiotics less than 5 times per year (P = 0·077) and ate plenty of prebiotic-containing food.


Тема - темы
COVID-19 , Gastrointestinal Microbiome , Probiotics , Humans , Longitudinal Studies , Pandemics , Prebiotics , SARS-CoV-2
11.
Brain Sci ; 12(1)2022 Jan 01.
Статья в английский | MEDLINE | ID: covidwho-1581013

Реферат

BACKGROUND: The COVID-19 pandemic has reached over 276 million people globally with 5.3 million deaths as of 22nd December 2021. COVID-19-associated acute and long-term neurological manifestations are well recognized. The exact profile and the timing of neurological events in relation to the onset of infection are worth exploring. The aim of the current body of work was to determine the frequency, pattern, and temporal profile of neurological manifestations in a cohort of Egyptian patients with confirmed COVID-19 infection. METHODS: This was a prospective study conducted on 582 hospitalized COVID-19 patients within the first two weeks of the diagnosis of COVID-19 to detect any specific or non-specific neurological events. RESULTS: The patients' mean (SD) age was 46.74 (17.26) years, and 340 (58.42%) patients were females. The most commonly encountered COVID-19 symptoms were fever (90.72%), cough (82.99%), and fatigue (76.98%). Neurological events (NE) detected in 283 patients (48.63%) and were significantly associated with a severe COVID-19 at the onset (OR: 3.13; 95% CI: 2.18-4.51; p < 0.0001) and with a higher mortality (OR: 2.56; 95% CI: 1.48-5.46; p = 0.019). The most frequently reported NEs were headaches (n = 167) and myalgias (n = 126). Neurological syndromes included stroke (n = 14), encephalitis (n = 12), encephalopathy (n = 11), transverse myelitis (n = 6) and Guillain-Barré syndrome (n = 4). CONCLUSIONS: Neurological involvement is common (48.63%) in COVID-19 patients within the first two weeks of the illness. This includes neurological symptoms such as anosmia, headaches, as well as a constellation of neurological syndromes such as stroke, encephalitis, transverse myelitis, and Guillain-Barré syndrome. Severity of acute COVID-19 illness and older age are the main risk factors.

12.
J Biomol Struct Dyn ; 39(15): 5756-5767, 2021 09.
Статья в английский | MEDLINE | ID: covidwho-1390290

Реферат

Herein, the DrugBank database which contains 10,036 approved and investigational drugs was explored deeply for potential drugs that target SARS-CoV-2 main protease (Mpro). Filtration process of the database was conducted using three levels of accuracy for molecular docking calculations. The top 35 drugs with docking scores > -11.0 kcal/mol were then subjected to 10 ns molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. The results showed that DB02388 and Cobicistat (DB09065) exhibited potential binding affinities towards Mpro over 100 ns MD simulations, with binding energy values of -49.67 and -46.60 kcal/mol, respectively. Binding energy and structural analyses demonstrated the higher stability of DB02388 over Cobicistat. The potency of DB02388 and Cobicistat is attributed to their abilities to form several hydrogen bonds with the essential amino acids inside the active site of Mpro. Compared to DB02388 and Cobicistat, Darunavir showed a much lower binding affinity of -34.83 kcal/mol. The present study highlights the potentiality of DB02388 and Cobicistat as anti-COVID-19 drugs for clinical trials. Communicated by Ramaswamy H. Sarma.


Тема - темы
COVID-19 , Protease Inhibitors , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
13.
J Biomol Struct Dyn ; 39(15): 5722-5734, 2021 09.
Статья в английский | MEDLINE | ID: covidwho-1390286

Реферат

In December 2019, a COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches have been utilized to identify potential natural products (NPs) as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. The MolPort database that contains over 100,000 NPs was screened and filtered using molecular docking techniques. Based on calculated docking scores, the top 5,000 NPs/natural-like products (NLPs) were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined 50 ns MD simulations and MM-GBSA calculations revealed nine potent NLPs with binding affinities (ΔGbinding) > -48.0 kcal/mol. Interestingly, among the identified NLPs, four bis([1,3]dioxolo)pyran-5-carboxamide derivatives showed ΔGbinding > -56.0 kcal/mol, forming essential short hydrogen bonds with HIS163 and GLY143 amino acids via dioxolane oxygen atoms. Structural and energetic analyses over 50 ns MD simulation demonstrated NLP-Mpro complex stability. Drug-likeness predictions revealed the prospects of the identified NLPs as potential drug candidates. The findings are expected to provide a novel contribution to the field of COVID-19 drug discovery.Communicated by Ramaswamy H. Sarma.


Тема - темы
COVID-19 , SARS-CoV-2 , Drug Discovery , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors
14.
Mar Drugs ; 19(7)2021 Jul 13.
Статья в английский | MEDLINE | ID: covidwho-1314693

Реферат

The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < -33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of -43.8 and -34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.


Тема - темы
Anthozoa/chemistry , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Diterpenes/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/isolation & purification , Diterpenes/chemistry , Diterpenes/isolation & purification , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , SARS-CoV-2/enzymology , SARS-CoV-2/pathogenicity , Structure-Activity Relationship
15.
Clin Exp Gastroenterol ; 14: 199-207, 2021.
Статья в английский | MEDLINE | ID: covidwho-1256154

Реферат

BACKGROUND: The novel coronavirus disease 2019 presents an urgent threat to global health. As the epidemic grows, prognosis prediction is essential for monitoring risky patient. It is thus important to consider gastrointestinal manifestations and the duration of symptoms as predictors of prognosis. Our aim was to determine the correlation of gastrointestinal symptoms and laboratory markers with disease outcomes and whether symptom duration varies substantially between patients. We also undertook this study to determine the optimal time to predict COVID-19 outcome. PATIENTS AND METHODS: A total of 190 patients with polymerase chain reaction-confirmed COVID-19 were followed up until recovery. We proposed a correlation between gastrointestinal symptoms and disease severity (based on clinical data, and diagnostic investigations) to estimate the duration of symptoms as a predictor of COVID-19 prognosis. RESULTS: The prevalence of gastrointestinal symptoms was 49.5%, consisting mainly of diarrhea in 27.9% of patients. In addition, a longer disease duration and higher temperature were observed in patients with diarrhea. Symptom duration was variable, with a median of 12 days and a range of 1-55 days. Statistical analysis indicated that patients with a duration of symptoms ≥12 day had more severe symptoms and a worse prognosis. Patients who complained of diarrhea had 2.7 times the odds of a longer duration of symptoms, and those with a history of chronic lung disease have 7.2 times the odds of a longer duration of symptoms. CONCLUSION: GIT manifestations (mainly diarrhea) and the duration of symptoms of COVID-19 provide prognostic evidence of COVID-19 outcomes, irrespective of earlier categorization by the World Health Organization. Thus, patients with mild symptoms who present with diarrhea and a duration of symptoms longer than 12 days are expected to have a worse prognosis.

16.
RSC Adv ; 10(57): 34541-34548, 2020 Sep 16.
Статья в английский | MEDLINE | ID: covidwho-1177122

Реферат

Two sesquiterpenes, 8α-anisate-dauc-4-ene-3,9-dione (webiol anisate) (1) and 10α-acetoxy-6α-benzoate-jaeschkeanadiol (2) as well as, ten known analogues (3-10), and two sesquiterpene coumarins (11-12) were isolated from an organic root extract of Ferula vesceritensis (Fam. Apiaceae). Chemical structures were elucidated based on IR, 1D- and 2D-NMR and HRMS, spectroscopic analyses. With molecular overlap observed between two protease inhibitors that are being examined as anti-COVID-19 drugs, and sesquiterpenes isolated here, metabolite molecular docking calculations were made using the main protease (Mpro), which is required for viral multiplication as well as RNA-dependent RNA polymerase (RdRp). In silico binding-inhibition analysis predicted that select F. vesceritensis sesquiterpenes can bind to these enzymes required for viral replication. Structures of the isolated constituents were also consistent with the chemo-systematic grouping of F. vesceritensis secondary metabolites with other Ferula species.

17.
Crit Care Explor ; 2(12): e0287, 2020 Dec.
Статья в английский | MEDLINE | ID: covidwho-1003819

Реферат

OBJECTIVES: Coagulopathy of coronavirus disease 2019 is largely described as hypercoagulability, yet both thrombotic and hemorrhagic complications occur. Although therapeutic and prophylactic anticoagulant interventions have been recommended, empiric use of antifactor medications (heparin/enoxaparin) may result in hemorrhagic complications, including death. Furthermore, traditional (antifactor) anticoagulation does not address the impact of overactive platelets in coronavirus disease 2019. The primary aim was to evaluate if algorithm-guided thromboelastography with platelet mapping could better characterize an individual's coronavirus disease 2019-relatedcoagulopathic state and, secondarily, improve outcomes. DESIGN SETTING AND PATIENTS: Coronavirus disease 2019 patients (n = 100), receiving thromboelastography with platelet mapping assay upon admission to an 800-bed tertiary-care hospital, were followed prospectively by a hospital-based thromboelastography team. Treating clinicians were provided with the option of using a pre-established algorithm for anticoagulation, including follow-up thromboelastography with platelet mapping assays. Two groups evolved: 1) patients managed by thromboelastography with platelet mapping algorithm (algorithm-guided-thromboelastography); 2) those treated without thromboelastography with platelet mapping protocols (non-algorithm-guided). Outcomes included thrombotic/hemorrhagic complications, pulmonary failure, need for mechanical ventilation, acute kidney injury, dialysis requirement, and nonsurvival. INTERVENTIONS: Standard-of-care therapy with or without algorithm-guided-thromboelastography support. MEASUREMENTS AND MAIN RESULTS: Although d-dimer, C-reactive protein, and ferritin were elevated significantly in critically ill (nonsurvivors, acute kidney injury, pulmonary failure), they did not distinguish between coagulopathic and noncoagulopathic patients. Platelet hyperactivity (maximum amplitude-arachidonic acid/adenosine diphosphate > 50 min), with or without thrombocytosis, was associated with thrombotic/ischemic complications, whereas severe thrombocytopenia (platelet count < 100,000/µL) was uniformly fatal. Hemorrhagic complications were observed with decreased factor activity (reaction time > 8 min). Non-algorithm-guided patients had increased risk for subsequent mechanical ventilation (relative risk = 10.9; p < 0.0001), acute kidney injury (relative risk = 2.3; p = 0.0017), dialysis (relative risk = 7.8; p < 0.0001), and death (relative risk = 7.7; p < 0.0001), with 17 of 28 non-algorithm-guided patients (60.7%) dying versus four algorithm-guided-thromboelastography patients (5.6%) (p < 0.0001). Thromboelastography with platelet mapping-guided antiplatelet treatment decreased mortality 82% (p = 0.0002), whereas non-algorithm-guided (compared with algorithm-guided-thromboelastography) use of antifactor therapy (heparin/enoxaparin) resulted in 10.3-fold increased mortality risk (p = 0.0001). CONCLUSIONS: Thromboelastography with platelet mapping better characterizes the spectrum of coronavirus disease 2019 coagulation-related abnormalities and may guide more tailored, patient-specific therapies in those infected with coronavirus disease 2019.

18.
Protein J ; 40(3): 296-309, 2021 06.
Статья в английский | MEDLINE | ID: covidwho-1002128

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emanating human infectious coronavirus that causes COVID-19 disease. On 11th March 2020, it has been announced as a pandemic by the World Health Organization (WHO). Recently, several repositioned drugs have been subjected to clinical investigations as anti-COVID-19 drugs. Here, in silico drug discovery tools were utilized to evaluate the binding affinities and features of eighteen anti-COVID-19 drug candidates against SARS-CoV-2 main protease (Mpro). Molecular docking calculations using Autodock Vina showed considerable binding affinities of the investigated drugs with docking scores ranging from - 5.3 to - 8.3 kcal/mol, with higher binding affinities for HIV drugs compared to the other antiviral drugs. Molecular dynamics (MD) simulations were performed for the predicted drug-Mpro complexes for 50 ns, followed by binding energy calculations utilizing molecular mechanics-generalized Born surface area (MM-GBSA) approach. MM-GBSA calculations demonstrated promising binding affinities of TMC-310911 and ritonavir towards SARS-CoV-2 Mpro, with binding energy values of - 52.8 and - 49.4 kcal/mol, respectively. Surpass potentialities of TMC-310911 and ritonavir are returned to their capabilities of forming multiple hydrogen bonds with the proximal amino acids inside Mpro's binding site. Structural and energetic analyses involving root-mean-square deviation, binding energy per-frame, center-of-mass distance, and hydrogen bond length demonstrated the stability of TMC-310911 and ritonavir inside the Mpro's active site over the 50 ns MD simulation. This study sheds light on HIV protease drugs as prospective SARS-CoV-2 Mpro inhibitors.


Тема - темы
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Drug Discovery , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , COVID-19/enzymology , COVID-19/genetics , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans
19.
Comput Biol Med ; 126: 104046, 2020 11.
Статья в английский | MEDLINE | ID: covidwho-837907

Реферат

Coronavirus Disease 2019 (COVID-19) is an infectious illness caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), originally identified in Wuhan, China (December 2019) and has since expanded into a pandemic. Here, we investigate metabolites present in several common spices as possible inhibitors of COVID-19. Specifically, 32 compounds isolated from 14 cooking seasonings were examined as inhibitors for SARS-CoV-2 main protease (Mpro), which is required for viral multiplication. Using a drug discovery approach to identify possible antiviral leads, in silico molecular docking studies were performed. Docking calculations revealed a high potency of salvianolic acid A and curcumin as Mpro inhibitors with binding energies of -9.7 and -9.2 kcal/mol, respectively. Binding mode analysis demonstrated the ability of salvianolic acid A and curcumin to form nine and six hydrogen bonds, respectively with amino acids proximal to Mpro's active site. Stabilities and binding affinities of the two identified natural spices were calculated over 40 ns molecular dynamics simulations and compared to an antiviral protease inhibitor (lopinavir). Molecular mechanics-generalized Born surface area energy calculations revealed greater salvianolic acid A affinity for the enzyme over curcumin and lopinavir with energies of -44.8, -34.2 and -34.8 kcal/mol, respectively. Using a STRING database, protein-protein interactions were identified for salvianolic acid A included the biochemical signaling genes ACE, MAPK14 and ESR1; and for curcumin, EGFR and TNF. This study establishes salvianolic acid A as an in silico natural product inhibitor against the SARS-CoV-2 main protease and provides a promising inhibitor lead for in vitro enzyme testing.


Тема - темы
Betacoronavirus/enzymology , Caffeic Acids/chemistry , Coronavirus Infections/drug therapy , Curcumin/chemistry , Cysteine Endopeptidases , Drug Discovery , Lactates/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pneumonia, Viral/drug therapy , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , COVID-19 , Caffeic Acids/therapeutic use , Coronavirus 3C Proteases , Coronavirus Infections/enzymology , Curcumin/therapeutic use , Cysteine Endopeptidases/chemistry , Humans , Lactates/therapeutic use , Pandemics , Pneumonia, Viral/enzymology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
20.
Ther Clin Risk Manag ; 16: 759-767, 2020.
Статья в английский | MEDLINE | ID: covidwho-732942

Реферат

The ongoing coronavirus (COVID-19) pandemic is a global health emergency of international concern and has affected management plans of many autoimmune disorders. Immunosuppressive and immunomodulatory therapies are pivotal in the management of neuromyelitis optica spectrum disorder (NMOSD), potentially placing patients at an increased risk of contracting infections such as COVID-19. The optimal management strategy of NMOSD during the COVID-19 era remains unclear. Here, however, we examined the evidence of NMOSD disease-modifying therapies (DMTs) use during the present period and highlighted different scenarios including treatment of relapses as well as initiation and maintenance of DMTs in order to optimize care of NMOSD patients in the COVID-19 era.

Критерии поиска